Search results for " cobalt"
showing 10 items of 24 documents
Electrosynthesis of Ce–Co Mixed Oxide Nanotubes with High Aspect Ratio and Tunable Composition
2008
Cerium oxide and cobalt oxides have attracted the interest of several researchers due to their potential application in several technological fields electrochromism, lithium batteries, catalysis, etc.. Ceria has been used as a promoter in the so-called “three-way catalyst” for the control of toxic emission from automobile exhaust. The promotion consists of the enhancement of the noble metal dispersion, as well as stabilization of the supporting medium toward thermal sintering. 1,2 A direct catalytic effect of CeO2 in chemical processes such as water–gas shift reaction or NOx decomposition has been also evidenced. 3,4
Ferrimagnetic Heisenberg chain; influence of a random exchange interaction
1985
We report on the magnetic behavior of ‘‘rigid’’ ferrimagnetic chains isolated in bimetallic complexes of the EDTA and ‘‘flexible’’ ones obtained in the amorphous variety. As shown by LAXS, the only noteworthy difference in the amorphous state is the random distribution of bond angles between nearest neighbors within chains. The ‘‘rigid’’ bimetallic chains in CoNi(EDTA)6H2O are described in terms of Heisenberg model with an exchange coupling J=−7.5 K. The behavior of the amorphous variety somewhat differs, following the law X=AT−0.8 typical of REHAC. A classical spin chain model involving a J distribution and alternating g factors allows to explain successfully the temperature dependence of …
Effects of capping agent on cobalt nanoparticles
2009
The achievement of high information density and fast recording rate in memory devices crucially depends on the structure of magnetic domains. In this paper cobalt nanoparticles are synthesised using two capping agents (TOA, ODA) and two different preparation routes: thermal decomposition (TD) and Solvated Metal Atom Dispersion (SMAD). The interaction of capping agents with free metal clusters and their influence on Co nanoparticles size, atomic structure and oxidation state is investigated by means of X-ray diffraction and X-ray absorption spectroscopy.
Graphene coating obtained in a cold-wall CVD process on the Co-Cr Alloy (L-605) for medical applications
2021
Graphene coating on the cobalt-chromium alloy was optimized and successfully carried out by a cold-wall chemical vapor deposition (CW-CVD) method. A uniform layer of graphene for a large area of the Co-Cr alloy (discs of 10 mm diameter) was confirmed by Raman mapping coated area and analyzing specific G and 2D bands
Density functional theory based screening of ternary alkali-transition metal borohydrides: a computational material design project.
2009
We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K M1; and 1 alkali, alkaline earth or 3d / 4d transition metal atom M2 plus two to five BH4 groups, i.e., M1M2BH42‐5, using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M1Al/ Mn/ FeBH44, Li/ NaZnBH43, and Na/ KNi/ CoBH43 alloys are …
The ferrimagnetic compounds CoM[M’(EDTA)]2⋅4H2O(M,M’=Co,Ni): Magnetic characterization of CoCo[Ni(EDTA)2]⋅4H2O
1990
Under the terms of the Creative Commons Attribution (CC BY) license to their work.
Performance Enhancement of Alkaline Water Electrolyzer Using Nanostructured Electrodes Synthetized by Template Electrosynthesis
2018
The increase of power generation by renewable sources is causing problems in the management of the electricity grid. In order to favor the transition from the current energy production towards renewable energy sources, it is necessary to plan strategy to develop suitable energy storage systems. Certainly, the electrochemical hydrogen production can be considered as one of the most promising storage technologies. In this work, an innovative alkaline electrolyzer is presented from its design based on the use of nanostructured electrodes up to its implementation suggested by the results of tests simulating real operation. The nanostructured electrodes were fabricated by template electrosynthes…
Combined small-angle x-ray scattering/extended x-ray absorption fine structure study of coated Co nanoclusters in bis(2-ethylhexyl)sulfosuccinate
2009
Chemically stable cobalt nanostructures have been prepared with Co(II) reduction in the confined space of cobalt bis(2-ethylhexyl)sulfosuccinate, Co(AOT)2, reverse micelles dispersed in n-heptane. The reaction was carried out by adding a solution of sodium borohydride in ethanol (1% weight) to a 0.2M micellar solution of Co(AOT)2 in n-heptane at a reductant to Co(II) molar ratio of 4. This procedure involves the rapid formation of surfactant-coated Co nanoparticles followed by their slow separation as nanostructures embedded in a sodium bis(2-ethylhexyl)sulfosuccinate matrix. The resulting composites, characterized by extended x-ray absorption fine structure and small-angle x-ray scattering…
Morphology and structure of electrospun CoFe2O4/multi-wall carbon nanotubes composite nanofibers
2010
CoFe2O4/multiwall carbon nanotubes (MWCNTs) composite nanofibers were produced by electrospinning a dispersion of MWCNTs in a solution of polyvinylpyrrolidone, iron(III) nitrate nonahydrate, cobalt (II) acetate tetrahydrate, absolute ethanol and H2O. Microstructure was examined by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). Thermal behaviour was studied by thermogravimetry and differential thermal analysis (TG-DTA) and phase analysis of calcined fibers was performed by X-ray diffraction (XRD). Upon thermal treatment at 450 °C defect-free, randomly oriented composite fibers having a mean diameter of 60 ± 10 nm were obtained. The results s…
Cobalt hexacyanoferrate–poly(methyl methacrylate) composite: Synthesis and characterization
2010
Abstract The preparation of cobalt hexacyanoferrate nanoparticles–poly(methyl methacrylate) (CoHCF–PMMA) composites are described together with their characterization and thermochromic properties. CoHCF nanoparticles – investigated by dynamic light scattering – were prepared by optimizing solvent composition and temperature to obtain nanoparticles with a reduced degree of aggregation. The nanoparticles were embedded in a PMMA matrix to obtain a transparent coloured composite which was studied by transmission electron microscopy. The nanoparticle chromic features, enhanced by their reduced sizes, were investigated by UV–vis and FT-IR spectroscopy.